
Robotic Telescopes, Student Research and Education (RTSRE) Proceedings
Conference Proceedings, Hilo, Hawaii, USA, Jul 23-27, 2018

Fitzgerald, M., Salimpour, S., Eds. Vol. 2, No. 1, (2019)
ISBN 978-0-6483996-1-2 / doi : 10.32374/rtsre.2019.013 / CC BY-NC-ND license

Peer Reviewed Article. rtsre.org/ojs

Google CoLaboratory as a Platform for Python
Coding with Students
Kalee Tock1*

Abstract
Google CoLaboratory (Google CoLab) is a powerful collaborative tool for coding in Python with
students. This work presents a project to calculate the period of an eclipsing binary system
that was completed by Stanford Online High School students using Google CoLaboratory.
The Las Cumbres Observatory 0.4m telescopes were used to obtain images, and photometry
from the Our Solar Siblings pipeline was imported into Google CoLaboratory using JSON
(Javascript Object Notation) for analysis in Python. Some additional classroom applications of
Google CoLaboratory are highlighted, such as converting between astronomical coordinate
systems.
Keywords
Keyword1 — Keyword2 — Keyword3

1Stanford Online High School, California, USA
*Corresponding author: kaleeg@stanford.edu

Introduction
Python modules have become increasingly popular
in astronomy for data analysis. Astronomers cite
Python’s numerous modules, extensive user com-
munity, helpful documentation, ease of use, and
most of all, the powerful plotting functionality as
reasons for adopting Python in their research. The
developer and user community that has grown up
around Python is especially dynamic and support-
ive, which contrasts with and augments the astro-
nomical community of practice Greenfield (2011).
Outside of astronomy, applications in geociences
are increasingly using Python because it is free,
accessible, and multiplatform Lin (2012).

It can be difficult to introduce students to Python
because of the complications of software installa-
tion and platform differences, particularly if stu-
dents are using their own individual computers. Us-
ing a browser-based tool lessens several of these
difficulties. Although Google CoLaboratory does

necessitate use of the Chrome browser, the lack
of additional software that is needed makes it par-
ticularly useful in a classroom environment to by-
pass platform and software issues and get students
straight into coding.

In this project, two separate student groups de-
veloped Python code to calculate the period of
an eclipsing binary system (Altunin et al. 2020;
Badami et al. 2020). The Las Cumbres Observatory
(LCO) 0.4m telescopes were used for image acqui-
sition, and the Our Solar Siblings pipeline was used
for photometry (Brown et al. 2013; Fitzgerald 2018).
We had the most success imaging eclipsing bina-
ries with apparent magnitude m < 13, and select-
ing systems that had deep primary and secondary
eclipses so as to be sure of seeing a definite dip in
the lightcurve from our data. The Kepler Eclipsing
Binary Catalogue hosted at Villanova University
provided the list of systems from which the student
groups selected their targets Kirk et al. (2016).



Google CoLaboratory as a Platform for Python Coding with Students — 2/13

The Importance of Manually
Inspecting Time Series Images

One important takeaway from this project was the
importance of flipping through all of the images
manually to determine which were and were not
suitable for analysis before feeding them into the
code. Images that showed evidence of atmospheric
interference or of collimation problems, as shown
in Figure 1, compromised the photometry. The
students constructed a scale from 1 – 4 to rate the
quality of their images, where 1 represented a high
quality image with round, well-defined stars and 4
was an image that was corrupted by clouds, satellite
trails, or imperfect tracking. They used this scale
to see how the results changed when images of
different quality ratings were included or excluded
from the analysis.

Determining Appropriate
Exposure Times for Variable Stars

Determining an appropriate exposure time is an it-
erative, trial-and-error sort of process. AstroImageJ
(AIJ) Collins et al. (2017), a free software for ma-
nipulating astronomical images, allows the user to
interactively determine the Right Ascension (RA)
and Declination (DEC) of stars by simply moving
their mouse over the star in the image. This is
achieved by using the World Coordinate System
plate solution. which allows the user to efficiently
locate particular stars in the image. The user de-
cides how big to make the circle, or aperture, and
places the aperture over the star. Within the aper-
ture, AIJ computes the centroid of the star as the
average position of the pixels, weighed by a mea-
surement of the light collected by each pixel, and
automatically adjusts the aperture to be centered at
the centroid.

The measurement of light is reported as a count
of analog-digital-units (ADU’s). When photons
strike the camera CCD, electrons are knocked loose
from their corresponding “buckets” on each pixel.
The ADU count is the number of these electrons.
AIJ reports the highest ADU count for a single
pixel within the aperture as the “peak”, and the total

ADU count from all of the pixels within the aperture
as “Int counts”, or “integrated counts”, shown in
Figure 2. Where the centered aperture covers a
fraction of a pixel, the corresponding fraction of the
ADU count measured by that pixel is included in
the integrated counts.

To avoid saturation, the “peak” should be com-
fortably lower than the total number of electrons
that the bucket can hold, which is usually 65,535
but can vary depending on the telescope Buchheim
(2015). However, the integrated counts needs to be
high enough that the signal will not be overwhelmed
by the inherent noise in the measurement. Noise
comes from electrons jiggling out of their buckets
due to causes that are not target star photons, like
light from other sources or heat from the telescope
that causes them to jiggle out without a photon stim-
ulus. AIJ calculates the signal-to-noise (SNR) ratio
from the aperture tool settings. It first counts up
the photons inside the aperture radius: this is the
signal. Then it subtracts off the average photons
per area from the region between an inner annulus
and an outer annulus that are both located outside
the aperture. This is the noise. In general, an SNR
between 100 and 200 is desirable, which usually
corresponds to integrated counts of at least 100,000
ADU and less than 500,000 ADU Fitzgerald et al.
(2018).

Another factor that must be kept in mind is that
these stars are variable, which is the whole point of
measuring their light in the first place. The bright-
ening and dimming of the target star, combined
with the clarity of the sky on the night the image is
taken, might correspond to as much as a doubling
or halving of the counts from any single image. So,
it is important not only for the ADU counts to be in
range, but for double or half that number of ADU
counts to be in range also.

This is further complicated by the need for the
ADU counts to be in range for several comparison
stars (comp stars) in addition to the target star.

Comp Stars
Even though the specifications of the LCO tele-
scopes and cameras are identical, the images are



Google CoLaboratory as a Platform for Python Coding with Students — 3/13

Figure 1. Sample image showing evidence of poor collimation

taken in multiple locations over the course of mul-
tiple nights Brown et al. (2013). Some skies are
clearer than others, and some viewing angles are
more direct than others. But, if atmospheric effects
cause more or less light from the target to reach the
telescope, then the atmosphere is likely to affect a
nearby comp star in the same way. So, instead of
reporting the measurement of light from the target
directly, we report the ratio of target light to comp
light. This ratio is equivalent to the difference in the
star magnitudes, since magnitude is on a log scale.

Of course, this only works if the comp star is
not itself inherently variable. To find the least vari-
able comp star, the students plotted the differential
magnitudes of several candidate comp stars rela-
tive to each other, looking for the flattest lines. It
was helpful to arrange the plots as a matrix in or-
der to disentangle the effect of one comp star from
that another. For example, the slight swishiness
of the sample comp star in Figure 3 below should
not eliminate the comp star against which it was
plotted, because this swishiness showed up in the
plots of this comp star against all of the other candi-

dates. In addition to examining the Comp vs. Comp
plots visually, the students also compared the stan-
dard deviations of the magnitudes and the slopes
from linear fits of each graph, took into account
the roundness, color, and average counts from the
comp star candidate compared to the target across
all of the images, and examined the scatter in the
final lightcurve.

Performing photometry manually in AstroIm-
ageJ on target and comps works well, and it is im-
portant to do it manually for several images to find
appropriate exposure times, select comp stars, get a
feel for the starfield, and understand what the num-
bers mean. However, each project had almost 600
images by the time it finished. It would be imprac-
tical and error-prone to perform the photometry in
this way for that many images. Also, as it turns out,
there is more than one way to count photons.

Photometry from the OSS Pipeline
The Our Solar Siblings (OSS) pipeline performs
six types of photometry on images that are returned



Google CoLaboratory as a Platform for Python Coding with Students — 4/13

Figure 2. Aperture photometry in AstroImageJ, showing the peak ADU count and integrated counts
within the aperture set by the user.

Figure 3. Sample comp star candidate eliminated
on the basis of its non-linear differential magnitude
plotted versus other comp stars

from LCO Fitzgerald (2018). The first three pho-
tometry types are similar to each other in that they
represent straight sums of ADU counts within an
aperture. These include aperture photometry (apt),
which is the type of photometry described above
that the students performed manually in AIJ. In ad-
dition, for each image, the pipeline returns source

extractor photometry (sex), and source extractor
kron photometry (sek). The sex and sek photome-
try algorithms measure integrated counts similar to
apt, though sex varies the aperture radius for each
star so as to capture 90% of the object’s light, and
sek models the star’s image as elliptical rather than
circular Holwerda (2005).

The remaining three photometry algorithms are
called dao, dop, and psx. These use mathemati-
cal models called point-spread functions (PSF’s) to
measure the light from any given star in an image
(Stetson 1987; Schechter et al. 1993; Bertin 2011;
Bertin and Arnouts 1996). These algorithms oper-
ate on the premise that if the telescope were outside
of Earth’s atmosphere, the starlight from a target
would fall on a single pixel of the CCD. Figure 4
shows the intensities of two stars A and B, where
B is brighter. The horizontal axis is the pixel x-
coordinate, and the intensity is shown as an ADU
count spike at a single pixel.



Google CoLaboratory as a Platform for Python Coding with Students — 5/13

Figure 4. Starlight from two stars before passing
through Earth’s atmosphere, as they appear on a
one-dimensional cross section of the CCD

As it passes through the atmosphere, however,
the light is spread out by atmospheric blurring, op-
tical quality and focus accuracy. The image of the
star becomes a “point spread function” that is bright
at the center and dimmer around the edges. Con-
servation of energy dictates that the peak intensity
and also the total area under the point spread func-
tion are both proportional to the total number of
photons from the star. Also, the full-width-at-half-
maximum, or FWHM, is the same for all stars, as
shown in Figure 5 Buchheim (2015).

Figure 5. Starlight from two stars after passing
through Earth’s atmosphere, as they appear on a
one-dimensional cross section of the CCD, fit to a
point-spread function

All of this is usually true, before detection. How-
ever, we are collecting light in discrete buckets,
pixel by pixel. Discrete buckets do not make a
smooth curve, particularly if the centroid of the
star is located in an awkward position relative to
the pixel boundaries. So, the types of dao, dop,

and psx are different mathematical models for what
the shape of the smooth curve would be if the data
could be taken continuously rather than discretely.

The details of dao, dop and psx, and the math-
emtical methods which underpin them have been
discussed in other papers (Stetson 1987; Schechter
et al. 1993; Bertin 2011). We took the pragmatic ap-
proach of deciding to use the model that gave us the
cleanest looking lightcurves. But to do that, it was
necessary to determine how to plot the lightcurves
in the first place.

Format of Data Returned By the
OSS Pipeline

What it means to say that “the OSS pipeline per-
forms 6 types of photometry” is that for every im-
age, 6 separate, comma-delimited text files are pro-
duced. The name of each textfile contains informa-
tion about the image and photometry used: target,
filter, exposure time, date, airmass, telescope, and
photometry type. In each of the text files are several
lines, each line corresponding to one star that the
photometry found in the image. The line begins
with the RA and Dec of the star, and then has the
integrated ADU count and the error for that star, as
well as the x and y pixel coordinates of the star in
the image. A schematic of the information associ-
ated with each image is shown in Figure 6.

Our goal was to locate the target star and the
comp stars from these lists of stars in each image,
and plot a lightcurve. But first, it was necessary
to find a reliable way of storing and sharing the
data with all of the students who were working on
it. Also, there was more than one eclipsing binary
project going: two class teams and a pilot project.
So, there were tens of thousands of data lines, each
pertaining to a star in a particular image.

Storing and Porting Data for
Python

In order to shield students file IO, extraction of the
image data from the filename using regular expres-
sions, and designing data structures, it was helpful
to design a data structure for each system that con-



Google CoLaboratory as a Platform for Python Coding with Students — 6/13

Figure 6. Schematic of the information returned for each image by the Our Solar Siblings pipeline

tained all of the information from all of the photom-
etry files.

It is designed as a Python dictionary called “sys-
tem” whose fields describe a given target. Among
those fields are dictionaries for each photometry
type. Each photometry type dictionary contains an
array of images. Each image is itself a dictionary
with fields for the filter, exposure time, date, and
an array of stars. Within the star array, each star
is a dictionary with fields for the RA, Dec, count,
count error, and pixel coordinates. Figure 7 shows a
schematic of the data structure into which the data
from the files in Figure 6 get loaded.

Some simple code extracted information from
the filenames and read the text files into this data
structure on the instructor’s home computer. Then,
JSON was used to create one (enormous!) text file
containing all of the data. This is accomplished
with a single line of code:

1 json_file.write(json.dumps(system))

The text file generated by this command then gets
copied to where it is needed (in my case, Google
drive) and read back into the same Python data

Figure 7. Schematic of the Python data structure
that the students worked with

structure using the command:

1 system = json.loads(string)

I think this is a particularly good system for
teachers, because it allows the teacher to design
the data structure and make sure that all her stu-
dents are using the same organization. Also, it does



Google CoLaboratory as a Platform for Python Coding with Students — 7/13

shield the students from file I/O and regular expres-
sions and things that are more computer-science-
y than astronomy-specific. Although, it could be
argued that computer science and astronomy are
intertwined, and students should be given more au-
thentic experiences in their use, we must look at
the practically and teacher training. The aim is to
allow teachers of varying ability to take this lesson
and construct a program that they are confident in
delivering.

The text file generated by the json.dumps com-
mand could be examined if that were desirable,
though it places enormous load on the computer
memory. However, it is human-readable, and shows
all of the structures and data. The beginning of the
file that was generated for one of the systems is
shown in Figure 8.

Google CoLaboratory
We used Google CoLaboratory for developing code
to analyze our systems. CoLaboratory has the func-
tionality of Google Docs for Python code, making it
ideal for classroom use. The students were already
using Google Docs to write their papers collabora-
tively, so having a consistent interface for writing
code was helpful. To see CoLaboratory in action,
open Google Drive on a Chrome browser. First,
make a new CoLaboratory, by going to “File >
New > More”. New CoLaboratory users may need
to click the “Connect More Apps” button before
the yellow infinity-sign CoLaboratory option will
appear.

CoLaboratory has two types of cells: code cells
and text cells. Users start in a code cell by default.
For example, one can type

1 print (Hello Astronomy!)

and then type Shift-Enter to run. The output of
a cell appears below that cell in the CoLaboratory.

Text cells can be accessed by clicking the menu
item at the top. Text cells allow the creation of
human-readable explanations, including links and
images, with an intuitive word-processing interface.
As with the code cells, clicking shift-enter from
within a cell displays the output text on the screen.

Text cells are particularly useful for teaching be-
cause they allow integration of code with rich text
describing the code and the theory behind it.

One useful application for the astronomy class-
room is converting between degree and hh:mm:ss
coordinates. To do this, it is necessary to install
astropy by typing the following commands into a
code cell:

1 !pip install astropy
2 from astropy.coordinates import SkyCoord
3 from astropy import units as u

In cases where it is desirable to convert a whole
spreadsheet of coordinates from one format into
another, or import a large JSON file into the code
as was necessary for the eclipsing binary projects,
we must understand how to make the CoLaboratory
read data files from Google Drive.

Reading Data Files from Google
Drive

The first important point about reading datafiles is
that one should not do it from a personal account.
The reason for this is that the code must be given
permissions to do anything it wants to the account
from which it reads datafiles. This is unwise if
multiple people are editing code, no matter how
trusted they are. It is best to make a throwaway
Google drive account to store the data, for which
the password can be freely shared. Note that the
code does not need to be run from the throwaway
Google drive account. When any CoLaboratory is
run that reads files from Google drive, the user is
prompted to specify an account and authenticate if
necessary.

Timing Out
When a CoLaboratory is run, Google assigns a vir-
tual machine to the user who is running it. After a
long period of inactivity, it logs the user out to free
up the virtual machine for other users. In practical
terms, this means that after a long (where “long”
generally means “a few hours”) period of inactivity,
the initial code cells will need to be re-run, any soft-
ware like astropy will need to be re-installed, and
data files will need to be re-loaded.



Google CoLaboratory as a Platform for Python Coding with Students — 8/13

Figure 8. Initial lines of the json file generated for one of the systems described in this paper

Generating a Lightcurve from OSS
Photometry Data

The tiny.cc/rtsre file contains code to load the data
into Python, and construct a lightcurve in sek pho-
tometry. In order to accomplish this, it is necessary
to find the closest star to the (preselected) target
and (preselected) comp star in each of the images,
making sure that the closest star is within at least 2
arcseconds of those star coordinates.

Bokeh
Bokeh is a powerful graphing software that outputs
directly to the browser from CoLaboratory. We
found it to be more useful and more accurate than
matplotlib for the purpose of this project. A range
of great features includes the ability to zoom in on
particular regions of any graph after it is generated,
as well as the ability to customize the colors and
download the graph using the disc icon at the right.
These features are highlighted in Figure 9 below.

Figure 9. Sample Bokeh plot output within a
CoLaboratory

Converting from Date to Phase
The reason that graph shown in Figure 9 above
does not show a definite set of eclipses is that the
system was sampled less than once every cycle.
For the lightcurve to become apparent, the observa-
tions must be “phased”, or plotted over the course
of a single period. For example, if the period is
0.3 days, and the second observation occurred 0.45



Google CoLaboratory as a Platform for Python Coding with Students — 9/13

days after the first observation, the second obser-
vation should be plotted at phase 0.5, because it is
halfway through the period of the system relative to
the first observation.

So, the way in which the lightcurve is plotted
depends on the period of the system. This is prob-
lematic because the period of the system is what we
are trying to calculate in the first place. As a first
estimate, we use the period that the Kepler space
telescope calculated for the system when it was ob-
served 3 years ago Kirk et al. (2016). This is shown
for sek photometry in Figure 10.

Figure 10. Example of a student eclipsing binary
system plotted as flux versus days (left) and flux
versus phase (right). Phase computed using period
from Kepler

Selecting a Photometric Method
But, the period is not the only unknown. As ex-
plained above, the photometry is being done by the
OSS pipeline in 6 different ways: dao, dop, psx,
sek, sex, and apt. The reader will recall that we
are taking the pragmatic approach of selecting the
photometry for which the resulting lightcurve has
the cleanest appearance. For one of our student
groups, that turned out to be source extractor kron,
or sek. For another group the standard source ex-
tractor (sex) photometry produced the best results.
Some sample curves are shown in Figure 11 below.

Finding the Best Period
Having selected our photometry, the students’ next
task was to figure out a way to adjust the period.
If the data are plotted with an incorrect period, the

lightcurve looks very messy. This is evident using
the Desmos tool written by Hagan Hensley. As the
period is adjusted, the lightcurve changes, so that
it is visually apparent when the appropriate period
has been found.

Phase Dispersion Minimization:
Standard Deviation and The

Distance Method
However, a more mathematical justification is needed
than “the lightcurve looks good”. The students used
two methods for finding the period mathematically.

Both of these methods operate on the premise
that if the period is correct, then points on a flux-
versus-phase graph that are close together in phase,
will also be close in flux. Although there are parts
of the curve where the flux changes rapidly with
phase, points close in phase will still have fluxes
that are more similar than they would be if the plots
were constructed on the basis of an inappropriate
period (Dworetsky 1983; Stellingwerf 1978).

The standard deviation method bins the observa-
tions into 10 groups by phase and sums the standard
deviations of each bin’s fluxes. The distance method
sums the physical distances between adjacent-phase
points on the flux-versus-phase graph. The methods
are shown graphically in Figure 12. Iterating the pe-
riod over multiple possible values and minimizing
the respective sums gives the best period.

Fortunately, both methods yielded a clear win-
ner for period. An example is shown in Figure 13.
Also, it turned out that the minimum gave a pe-
riod that was identical to the period provided via
Kepler’s dataset to within a few seconds. Plotting
the lightcurve with this minimum period indeed
yielded a very well-defined lightcurve. This gave
us confidence in our method of calculating it.

Computing the Error
The literature is conflicting regarding computation
of the error of a period obtained by phase dispersion
minimization as we have done (Montgomery and
Odonoghue 1999). Our best solution was to take
as our error the distance in period-space between

https://www.desmos.com/calculator/o3thrlvlvg


Google CoLaboratory as a Platform for Python Coding with Students — 10/13

Figure 11. Sample lightcurves from the various photometry types, used to process 2x2 binned images
from the LCO 0.4m telescopes. Phase computed using period from Kepler

the two points that fall 5% of the way up from the
minimum point of the curve shown in Figure 13.
Although 5% seems somewhat arbitrary, this does
give the reader an idea of the range of periods that
would yield a relatively low standard deviation or
distance.

Future Work: Time Series Projects
Time series photometric analysis such as that done
in these projects is useful for investigating eclipsing
binaries, and that is what was done in these projects.
However, there are some other types of variable
star projects that could make use of the code that
was developed here. The students are inspired by
and excited about the possibility of studying exo-
planets, which also cause a predictable variation in
starlight when they pass in front of their host star.
Other stars whose characteristics can be understood

through photometry include RR Lyrae, which grow
and shrink in a predictable cycle due to changing
surface temperature.

The students would also like to re-examine the
method used for determining the period error in
this work, as they entertained some (well-founded)
misgivings regarding the 5% method that we used.
Finally, they would like to understand the temper-
ature of the system using B – V curves (Sekiguchi
and Fukugita 2000) . The instrumental B – V curve
for the system featured here, shown in Figure 14,
seems too noisy to be productive for further analy-
sis. However, we have been pointed toward some
modeling software that might be able to make sense
of it.



Google CoLaboratory as a Platform for Python Coding with Students — 11/13

Figure 12. An illustration of the quantities to be minimized for the standard deviation and distance
methods, respectively.

Future Work: CoLaboratory
One of the participants at the 2018 RTSRE confer-
ence suggested that there is an easier way to share
datafiles online, using something called Firebase
cloud storage. Apparently, if we use firebase, we
will be able to access the file from Python directly
using a ”requests.get” command, without having
to give anyone permissions to any Gdrive account.
So, possibly the contortions around filesharing will
soon become more straightforward.

Also, I would like to find a way to flip through
the raw .fits images within a CoLaboratory, so as to
be able to rate their quality directly in the browser
by scrolling without having to keep track of this
separately in a spreadsheet. This does not appear
to be possible currently, but I am looking for a
solution.

Conclusion
Using Python code written together in Google Co-
Laboratory, students were able to investigate the
photometry of images of an eclipsing binary sys-
tem that were returned by the Our Solar Siblings
pipeline. Google CoLaboratory is a powerful sys-
tem for enabling students to perform such investi-
gations, because it facilitates students writing code
together at the same time in a shared document,
viewing and learning from each others’ techniques

and each others’ error messages.

Acknowledgments
I would like to thank my husband Theron for in-
troducing me to JSON and for generally being my
IT (and personal) support. My sons Ezra and Ryan
helped me with Python syntax on multiple occa-
sions (no, I am not too proud to ask for help from
an 11-year old. Desperate times.). Special thanks
go to Rachel Freed for introducing me to the won-
derful world of astronomy research, for being an
amazing mentor herself and for connecting me to
other fantastic mentors. One of those was Michael
Fitgerald, of Our Solar Siblings, a frequent source
of invaluable help throughout this project and others.
Thanks to Richard Harshaw and Bob Buchheim for
patiently explaining how image saturation works
and to Russ Genet for his encouragement. Thanks
to the Las Cumbres Observatory robotic telescope
network, which generously provided the telescope
time and much-appreciated support throughout this
project. Thanks especially to my incredible science
division colleagues and the amazing students of
Stanford Online High School, to whom I am grate-
ful for plunging into this journey and sticking with
it (and with me) throughout its many twists and
turns!



Google CoLaboratory as a Platform for Python Coding with Students — 12/13

Figure 13. Sample results of the distance algorithm from one of the student projects

Figure 14. Sek photometry lightcurves for B, V, rp,
and ip filters using Kepler Period (left) and
instrumental B – V curve using sek photometry and
Kepler Period (right)

References
Altunin, I., Caputo, R., and Tock, K. (2020). Period

of Eclipsing Binary EPIC 201458798. Astronomy
Theory, Observations & Methods, 1(1).

Badami, U. A., Gosart, L., North, J., and Tock, K.
(2020). Observations of Eclipsing Binary EPIC
201826968. Astronomy Theory, Observations &
Methods, 1(1).

Bertin, E. (2011). Automated morphometry with
SExtractor and PSFEx. In Astronomical Data

Analysis Software and Systems XX, volume 442,
page 435.

Bertin, E. and Arnouts, S. (1996). SExtractor: Soft-
ware for source extraction. Astronomy and Astro-
physics Supplement Series, 117(2):393–404.

Brown, T., Baliber, N., Bianco, F., Bowman, M.,
Burleson, B., Conway, P., Crellin, M., Depagne,
É., De Vera, J., Dilday, B., et al. (2013). Las
Cumbres Observatory global telescope network.
Publications of the Astronomical Society of the
Pacific, 125(931):1031.

Buchheim, R. K. (2015). Astronomical Discoveries
You Can Make, Too!: Replicating the Work of the
Great Observers. Springer.

Collins, K. A., Kielkopf, J. F., Stassun, K. G., and
Hessman, F. V. (2017). AstroImageJ: Image
processing and photometric extraction for ultra-
precise astronomical light curves. The Astronom-
ical Journal, 153(2):77.

Dworetsky, M. (1983). A period-finding method
for sparse randomly spaced observations or “How
long is a piece of string?”. Monthly Notices of
the Royal Astronomical Society, 203(4):917–924.



Google CoLaboratory as a Platform for Python Coding with Students — 13/13

Fitzgerald, M. T. (2018). The Our Solar Siblings
Pipeline: Tackling the data issues of the scaling
problem for robotic telescope based astronomy
education projects. RTSRE, 1(1):347–358.

Fitzgerald, M. T., McKinnon, D. H., Danaia, L.,
Cutts, R., Salimpour, S., and Sacchi, M. (2018).
Our Solar Siblings. A high school focussed
robotic telescope-based astronomy education
project. RTSRE, 1(1):221–235.

Greenfield, P. (2011). What python can do for as-
tronomy. In Astronomical Data Analysis Soft-
ware and Systems XX, volume 442, page 425.

Holwerda, B. W. (2005). Source extractor for dum-
mies v5. arXiv preprint astro-ph/0512139.

Kirk, B., Conroy, K., Prša, A., Abdul-Masih, M.,
Kochoska, A., MatijeviČ, G., Hambleton, K.,
Barclay, T., Bloemen, S., Boyajian, T., et al.
(2016). Kepler eclipsing binary stars. VII. The
catalog of eclipsing binaries found in the en-
tire Kepler data set. The Astronomical Journal,
151(3):68.

Lin, J. W.-B. (2012). Why Python is the next wave
in earth sciences computing. Bulletin of the Amer-
ican Meteorological Society, 93(12):1823–1824.

Montgomery, M. and Odonoghue, D. (1999). A
derivation of the errors for least squares fitting
to time series data. Delta Scuti Star Newsletter,
13:28.

Schechter, P. L., Mateo, M., and Saha, A. (1993).
DOPHOT, a CCD photometry program: Descrip-
tion and tests. Publications of the Astronomical
Society of the Pacific, 105(693):1342.

Sekiguchi, M. and Fukugita, M. (2000). A Study
of the B- V Color-Temperature Relation. The
Astronomical Journal, 120(2):1072.

Stellingwerf, R. F. (1978). Period determination
using phase dispersion minimization. The Astro-
physical Journal, 224:953–960.

Stetson, P. B. (1987). DAOPHOT: A computer pro-
gram for crowded-field stellar photometry. Publi-
cations of the Astronomical Society of the Pacific,
99(613):191.


	Acknowledgments

